ENZYME REACTIONS IN APOLAR SOLVENT. 6.8 THE EFFECT OF DOUBLE BOND ISOMERISM ON THE RATE OF PPL-CATALYZED ACYLATION OF ALLYLIC ALCOHOLS

Brian **Morgan \$*** and Allan C. Oehlschlager

Department of Chemistry, Simon Fraser University, Burnaby B.C., Canada V5A 1S6

(Received 22 *January* 1993)

Abstract: (E)- and Q-isomers of allylic alcohols showed a difference in the rate of porcine pancreatic lipase (PPL) catalyzed acylation. Enzyme-catalyzed acylation was applied to.the purification of two terpenic alcohols.

INTRODUCTION

Enzymes have become increasing popular as catalysts in synthetic organic chemistry due to their ability to form isomerically pure compounds.¹ Lipases have attracted much attention as they are realtively inexpensive, show broad substrate specificity with often high selectivity, and can operate in both aqueous and anhydrous organic solutions.² As a cheap, crude preparation, porcine pancreatic lipase (PPL) has been widely used, and examples of its chemoselectivity,³ regioselectivity,⁴ enantioselectivity $\frac{5}{9}$ and prochiral selectivity6 have all been described. However, little has been reported on the ability of PPL to distinguish between E/Z stereoisomers. Herein we report our observations on the PPL-catalyzed transesterification of E/Z mixtures of primary and secondary allylic alcohols.

RESULTS

A. 1' ALLYLIC ALCOHOLS

While examining the PPL-catalyzed acylation of isomerically pure 2° allylic alcohols, it was noted that the enzyme exerted a large difference in both reactivity and enantioselectivity between (E) - and (Z) -2° allylic alcohols.^{5b}

Competition reactions, using mixtures of (E) - and (Z) -1° allylic alcohols, also showed a difference in reactivity.

When an equimolar mixture of (E) - and (Z) -2-nonenol $(1)^7$ was subjected to PPL-catalyzed transesterification in Et20 with a deficiency of trifluoroethyl butymte (TFEB) as acylating agent, 2-3 times as much of the (E) -butyrate was formed over the course of the reaction (Table 1).

Table 1. PPL-Catalyzed Acylation of 1° Allylic Alcohols

Conditions: Substrate (0.3-0.4M), TFEB (0.2-0.35M), PPL (0.2 g) in Et₂O (5 mL). ^aE: Z calculated from the GC signal area ratio⁸

Introduction of a methyl group at the 2-position was expected to change the stereoselectivity, so the acylation of 2-methyl-2-decenol $(2)^9$ was carried out. While the E/Z ratio of the starting alcohol was 5.3:1, the E/z ratio of the butyrate formed was approximately 14: 1, again showing an almost 3-fold preference for reaction with the (E)-isomer.

A sample of commercial nerol was found to be a 6.2:1 mixture of nerol and geraniol when examined by GC. Although a 6-fold excess of nerol was present, twice as much geranyl butyrate was initially formed when the mixture was submitted to PPL-catalyzed transesterification. It was surprising that the more remote 3-methyl group ion 3 should affect selectivity to a greater extent than the 2-methyl substituent in 2. This result is in agreement with those of other groups who have also observed high selectivity in the enzyme-catalyzed acylation of nerol/geraniol mixtures using PPL¹⁰ and mycelia from *Rhizopus arrhizus*.¹¹

An attempt was made to apply this selective acylation technique to the purification of famesol. When examined by CC, a sample of old technical farnesol (4a) was found to be a 1:3.3:2.4 mixture of isomers, presumed to be the (22,6Z), (2E,6Z) and (2E,6E) isomers respectively. (A sample of technical famesyl butyrate (4b), chemically prepared, was also a 1:3.4:2.7 mixture of isomers, while the butyrate prepared from trans, trans-farnesol displayed a single peak on GC.) A solution of technical farnesol in Et2O was treated with TPEB (0.5 equiv.) in the presence of PPL. Whilst the starting alcohol was a 1:3.3:2.4 mixture

of isomers, the initially formed butyrates were in the ratio 1:10:26, declining to 1:8:14 after stirring overnight. ¹H NMR of the vinylic region indicated that significant purification had occurred (Fig. 1).

Fig. 1. Partial ¹H NMR of the vinylic regions of: (a) pure (2E,6E) farnesyl butyrate; (b) technical farnesyl butyrate prepared chemically; (c) technical farnesyl butyrate prepared by PPL-catalyzed acylation.

B. 2º ALLYLIC ALCOHOLS

For 3-undecen-2-ol $(5a)$ and 4-phenyl-3-buten-2-ol $(6a)$ the (E) -isomer reacted 20-40 times faster than the (Z)-isomer (Table 2). Because of the high enantioselectivity, the (S)-enantiomer of the (E) -isomer did not participate in the reaction, and the concentration of the of the (E) -isomer is essentially about half that of the (Z) -isomer.

Table 2. PPL-Catalyzed Kinetic Resolution of 2° Allylic Alcohols

Conditions: Substrate (0.3 M), TFEB (0.5-0.9 M), PPL (1.0 g) in Et2O (5 ML).

^a E : Z calculated from the GC signal area ratio.⁸ ^b E value calculated as in ref. 12. ^c E values were determined from separate runs.¹³

As for 1° allylic alcohols, the presence of a methyl group in the 3-position had a dramatic effect on the selectivity of the reaction. However in the case of allylic alcohol $6a^{14}$ the acylation proceeded more slowly and the (E) -isomer reacted only 3-4 times faster than the (Z) -isomer. Furthermore, the presence of the 3-methyl substituent resulted in an convergence of the E values for the two stereoisomers.

ACKNOWLEDGEMENT: We wish to thank the Natural Sciences and Engineering Research Council of Canada **for suppon** of this work through provision of an NSERC Industrial Fellowship to BM and a Biotechnology Strateg,c Grant to AC0

REFERENCES
§. For Part 5

- For Part 5 see ref. Sa
- \ddagger . Present Address: Biotranformations U-5A-19, Schering-Plough Research Institute, 1011 Morris Ave., New Jersey, USA 07083

1. (a) Santaniellu. E.; Ferraboschi, P.; Grisenti. P.; Manzoechi, A. Chem. *Rev.* 1992,92, 1071. (b) Drueckhammer, D.G.;Hennen, W.J.; Pederson, R-L.; Barbas, C.L.; Gautheron, C.M.; Krach, T.; Wong, C.-H. *Synthesis,* 1991. 499. (c) Servi. S. *Synthesis, 1990,* 1. (d) *Biocatalysis,* Abramowicz, D.A., Ed.; Van Nostrand Rheinhold: New York, 1990. (e) Davies, H.G.; Green, R.H.; Roberts, S.M.; Eds.; *Biotransformations in Preparative Organic Chemistry, Academic Press: London, 1989. (f) Ohno, M.;* Otsuka, M. *Org. React.* 1989,37. 1. (g) Yamada, H.; Shimizu, S. *Angew. Chem., Znt. Ed. Engl. 1988, 27, 622.* (h) Jones, f.B. *Tetrahedron 1986,42, 3351.* (i) Whitesides, G.M.; Wong, C.-H. *Angew. Chem., Int. Ed. Engl.* 1985, 24, 617.
2. (a) Esper K - Riva, S. Synth.

2. (a) Faber, K.; Riva, S. *Synthesis, 1992, 895.* (b) Xie, Z.-F. *Tetrahedron:* **Asymm. 1991.2, 733. (c)** Kazlauskas. **k.J.;** Weissfloch, A.N.E.; Rappaport, A.T.; Cuccia, L.A. J. *Org. Chem.* **1991,56, 2656.** (d) Boland. W.; FtiOl. C.; Lorenz, M. *Synthesis, 1991, 1049. (e)* Klibanov, A.M. *Act. Chem. Res. 1990.23, 114. (f)* Chen, C.-S.; Sih, C.J. *Angew. Chem., Zntl. Ed. Engl. 1989,28, 695. (g)* Sih, C.J.; Wu, S.-H In Tupics *in Stereochemistry;* Eliel. E.L., Wilen, S.H., Eds.; Wiley-Interscience: New York, 1989; Vol. 19, pp63-125.

(a) Oehlschlrger. A.C.; Ramaswamy. S.; Morgan, B. *Tetrahedron Lett. 1990,3Z, 165.* (b) Thersiod, M.; Klibtmov, A.M. *J. Am.* Chem. Sot. 1986,108, 5638.

Colombo, D.; Ronchetti, F.; Toma, L. Tetrahedron 1991,47, 103.

4: (a) Morgan, B.; Oehlschlager, A.C.; Stokes, T.M. *J. Org. Chem. 1992.57, 3231.* (b) Morgan B.; Oehlschlager, A-C.; Stokes, T.M. *Tetrahedron 1991.47, 1611. (c)* Johnson. B.D.; Morgan, B.; Oehlschlager, A.C.; Ramaswamy, S. Tetrahedron: Asymm. 1991, 2, 377.

6. (a) Ramos-Tntnbo, G.M.; Sehar, H.-P.; Femandez-Busquets. X.; Ghisalba, 0. *Tetrahedron Lea. 1986,47, 5707.* (b) Guanti, G.; Banfl, L.; Narisano, E. *Tetrahedron: Asymm. 1990.1. 721.*

7. **E/Z-2-Nonenyl acetate (1.6 mmol) was deesterfied with K₂CO₃/MeOH and the crude product** acylated with TFEB (0.95 mmol) and PPL (0.2 g). **E/Z-2-nonenol (1)** did not resolve on the GC column.

8. Gas chromatography was performed on a J/W fused silica DB-1 capillary glass column (15 m X 0.25 mm) using the following temperature program: initial temperature 60° C for 1 min; 20 deg/min; final temperature 250°C for 2 min.
9. Prenared by Wittig-H

Prepared by Wittig-Horner reaction of triethyl 2-phosphonopropionate with octanal, followed by LiAlH4 reduction, as a 5.3:1 mixture of E/Z isomers (as shown by GC and ¹H NMR).

10. (a) Fournerom, J.-D.; Chiche, M.; Piéroni, G. *Tetrahedron Lett.* **1990**, 31, 4875. (b) Fourneron, J.-D.; Combemorel, A.; Bue, J.; Piéroni G. *Tetrahedron L*²tt. **1992**, 33, 2469.

11. Novo's Handbook of Practical Biotechnology; Boyce, C.O.L., Ed., Novo Industri A/S: Denmark, 1986; pp48-50.

12. Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, CJ, *J. Am. Chem. Sot. 1982,104, 7294*

13. The enantiomer excess (ee) of the unreacted alcohol (ees) and the product (eep)(after hydrolytic removal of the butyrate) was determined by derivatization with acetyl (S)-lactyl chloride followed by GC analysis of the diastemomers.

In the case of (E) - and (Z) -4-phenyl-3-buten-2-ol (6) the lactate esters did not resolve on the GC column. Ee_s and ee_p for each isomer was determined in separate runs after hydrogenation of the reaction mixtures and derivatization with acetyl (S) -lactyl chloride.

In the case of (E) - and (Z) -3-undecen-2-ol (5), the (Z)-isomer was contaminated with a small amount of 2undecanol which interfered with an accurate determination of ee_s for the (E) -isomer. E values were determined in separate runs
14 Prepared by addition

. Prepared by addition of MeLi to commercial citral.